Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 267(Pt 1): 131386, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582458

RESUMEN

Verteporfin (VER), a photosensitizer used in macular degeneration therapy, has shown promise in controlling macrophage polarization and alleviating inflammation in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). However, its hydrophobicity, limited bioavailability, and side effects hinder its therapeutic potential. In this study, we aimed to enhance the therapeutic potential of VER through pulmonary nebulized drug delivery for ALI/ARDS treatment. We combined hydrophilic hyaluronic acid (HA) with an oil-in-water system containing a poly(lactic acid-co-glycolic acid) (PLGA) copolymer of VER to synthesize HA@PLGA-VER (PHV) nanoparticles with favorable surface characteristics to improve the bioavailability and targeting ability of VER. PHV possesses suitable electrical properties, a narrow size distribution (approximately 200 nm), and favorable stability. In vitro and in vivo studies demonstrated the excellent biocompatibility, safety, and anti-inflammatory responses of the PHV by suppressing M1 macrophage polarization while inducing M2 polarization. The in vivo experiments indicated that the treatment with aerosolized nano-VER (PHV) allowed more drugs to accumulate and penetrate into the lungs, improved the pulmonary function and attenuated lung injury, and mortality of ALI mice, achieving improved therapeutic outcomes. These findings highlight the potential of PHV as a promising delivery system via nebulization for enhancing the therapeutic effects of VER in ALI/ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Portadores de Fármacos , Ácido Hialurónico , Nanopartículas , Verteporfina , Lesión Pulmonar Aguda/tratamiento farmacológico , Ácido Hialurónico/química , Animales , Ratones , Verteporfina/administración & dosificación , Verteporfina/farmacología , Verteporfina/uso terapéutico , Nanopartículas/química , Portadores de Fármacos/química , Células RAW 264.7 , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Aerosoles , Masculino , Sistemas de Liberación de Medicamentos , Administración por Inhalación
2.
MedComm (2020) ; 5(3): e485, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38434762

RESUMEN

Hydrogen sulfide for wound healing has drawn a lot of attention recently. In this research, the S-propargyl-cysteine (SPRC), an endogenous H2S donor, was loaded on carbomer hydrogel, and a copper sheet rat burn model was developed. Pathological changes in rat skin tissue were examined using hematoxylin-eosin (HE) and Masson staining. The immunohistochemistry (IHC) staining was performed to detect the expression of Collagen I (Col I) and Collagen III (Col III). The mRNA levels of interleukin (IL)-6, Col Iα2, Col IIIα1, tissue inhibitors of metalloproteinase (TIMP)-1, matrix metalloproteinase (MMP)-9, vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-ß1 were examined by quantitative real-time chain polymerase reaction. The findings demonstrated that the collagen layer was thicker in the SPRC group during the proliferative phase, SPRC hydrogel promoted VEGF expression. In the late stage of wound healing, the expression of IL-6, TIMP-1, MMP-9, and TGF-ß1 was inhibited, and the Col I content was closer to that of normal tissue. These results surface that SPRC hydrogel can promote wound healing and play a positive role in reducing scar formation. Our results imply that SPRC can facilitate wound healing and play a positive role in reducing scar formation.

3.
Antioxid Redox Signal ; 40(1-3): 110-121, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37950704

RESUMEN

Hydrogen sulfide (H2S) is a gasotransmitter with significant physiological effects, including anti-inflammatory properties, regulation of oxidative stress, and vasodilation, thus regulating body functions. Functional therapy involves using treatments that target the underlying cause of a disease, rather than simply treating symptoms. Epigenetics refers to changes in gene expression that occur through modifications to DNA, to the proteins that package DNA, or to noncoding RNA mechanisms. Recent research advances suggest that H2S may play a role in epigenetic regulation by altering DNA methylation patterns and regulating histone deacetylases, enzymes that modify histone proteins, or modulating microRNA mechanisms. These critical findings suggest that H2S may be a promising molecule for functional therapy in various diseases where epigenetic modifications are dysregulated. We reviewed the relevant research progress in this area, hoping to provide new insights into the epigenetic mechanisms of H2S. Despite the challenges of clinical use of H2S, future research may lead to the progress of new therapeutic approaches. Antioxid. Redox Signal. 40, 110-121.


Asunto(s)
Sulfuro de Hidrógeno , MicroARNs , Epigénesis Genética , Sulfuro de Hidrógeno/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Metilación de ADN , ADN/metabolismo
4.
Heliyon ; 9(12): e22650, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058447

RESUMEN

Background: and Purpose: Fuzitang decoction (FZT), a classic prescription of traditional Chinese medicine (TCM), has excellent efficacy in treating gouty arthritis (GA). However, the underlying molecular mechanism remains obscure. In the present study, we aimed to explore the underlying mechanisms of FZT in treating GA by virtual screening combined with experimental verification. Methods: In this study, the active components of FZT and their corresponding targets were screened from the TCMSP database and TargetNet database. Then, the potential targets of FZT against GA were retrieved from multiple databases to generate a network. Protein-protein interaction, herbal-component-target, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were applied to identify potential targets and related signaling pathways. Furthermore, molecular docking simulation was applied to identify the interactions between the drug and targets. Finally, in vitro experiments were conducted to validate the potential targets and signaling pathways. Results: In the present study, several crucial components, including kaempferol, luteolin, catechin, deoxyandrographolide, and perlolyrine in FZT, were obtained through network pharmacology, and several potential targets to treat GA were developed, such as PPARG, CYP3A4, PTGS2 (known as COX2), VEGFA, and CYP1A1. Experimental validation suggested that deoxyandrographolide significantly suppressed the expression of IL-1ß, COX2, NLRP3 and IL-6 in inflammatory monocyte cells. Conclusions: Our results identified a novel anti-inflammatory compound, deoxyandrographolide, which helps to explain the potential mechanism of FZT in treating GA and provides evidence to support FZT's clinical use.

5.
Int J Nanomedicine ; 18: 6185-6198, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37933297

RESUMEN

Background: Photodynamic therapy (PDT) has emerged as a promising strategy for oral cancer treatment. Verteporfin is a powerful photosensitizer and widely used in the treatment of macular degeneration. However, rare work has reported its potential in the treatment of oral cancer. Methods: In this study, we introduce an innovative approach of nano-photosensitizer based on Verteporfin, which was prepared by utilizing macrophage membrane to coat Verteporfin-loaded zeolitic imidazolate framework 8 (ZIF-8) for effective photodynamic therapy against oral cancer. Nanoparticle characteristics were assessed including size, zeta potential, and PDI. Cellular uptake studies were conducted using CAL-27 cells. Furthermore, inhibitory effects in both in vitro and in vivo settings were observed, ensuring biosafety. Assessment of anticancer efficacy involved tumor volume measurement, histological analyses, and immunohistochemical staining. Results: In vitro experiments indicated that the nano-photosensitizer showed efficient cellular uptake in the oral cancer cells. Upon the laser irradiation, the nano-photosensitizer induced the generation of reactive oxygen species (ROS), leading to cancer cell apoptosis. The in vivo experiments indicated that the coating with cell membranes enhanced the circulation time of nano-photosensitizer. Moreover, the specificity of the nano-photosensitizer to the cancer cells was also improved by the cell membrane-camouflaged structure in the tumor-bearing mouse model, which inhibited the tumor growth significantly by the photodynamic effect in the presence of laser irradiation. Conclusion: Overall, our findings demonstrate the potential of macrophage membrane-coated ZIF-8-based nanoparticles loaded with Verteporfin for effective photodynamic therapy in oral cancer treatment. This nano-system holds promise for synergistic cancer therapy by combining the cytotoxic effects of PDT with the activation of the immune system, providing a novel therapeutic strategy for combating cancer.


Asunto(s)
Neoplasias de la Boca , Nanopartículas , Fotoquimioterapia , Ratones , Animales , Fármacos Fotosensibilizantes/farmacología , Verteporfina/uso terapéutico , Fototerapia , Neoplasias de la Boca/tratamiento farmacológico , Nanopartículas/química , Modelos Animales de Enfermedad , Línea Celular Tumoral
6.
MedComm (2020) ; 4(5): e338, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37600507

RESUMEN

Aconitum carmichaelii (Fuzi) is a traditional Chinese medicine that has been widely used in the clinic to save the dying life for over several thousand years. However, the medicinal components of Fuzi in treating vascular senescence (VS) and its potential mechanism remain unclear. In this study, a network pharmacology method was used to explore the possible components and further validated by experiments to get a candidate compound, deoxyandrographolide (DA). DA restrains aging biomarkers, such as p16, p21, γH2A.X, and p53 in vitro and in vivo blood co-culture studies. Histone deacetylase 1 (HDAC1), mouse double minute2 (MDM2), cyclin-dependent kinase 4, and mechanistic target of rapamycin kinase (mTOR) are predicted to be the possible targets of DA based on virtual screening. Subsequent bio-layer interferometry results indicated that DA showed good affinity capability with HDAC1. DA enhances the protein expression of HDAC1 in the angiotensin II-induced senescence process by inhibiting its ubiquitination degradation. Loss of HDAC1 by CRISPR/Cas9 leads to the disappearance of DA's anti-aging property. The enhancement of HDAC1 represses H3K4me3 (a biomarker of chromosomal activity) and improves chromosome stability. RNA sequencing results also confirmed our hypothesis. Our evidence illuminated that DA may achieve as a novel compound in the treatment of VS by improving chromosome stability.

7.
MedComm (2020) ; 4(4): e273, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37521428

RESUMEN

Gene therapy has emerged as a potential approach for lung cancer therapy. However, the application of gene therapy is still limited by their properties, such as low specificity to the cancer cells, negatively charged groups, short systemic circulation time, and rapid degradation by nucleases. The progression of lung adenocarcinoma (LUAD) can be promoted through the methylation process of miR-148a-3p promoter, as confirmed by our previous research. In the current study, we are the first to design a mirrored Arg-Gly-Asp (RGD)-modified cationic peptide (RD24) as a microRNA (miRNA) vehicle, which enabled to pack the miRNA (miR-148a-3p) efficiently and generate RD24/miR-148a-3p nanoparticles (RPRIN) by self-assembling. RPRIN exhibited a high transfection efficiency in lung cancer cells via the conjugation between RGD and integrins on the surface of lung cancer cells. Furthermore, RD24 showed matrix metallopeptidase 2 (MMP2) responsiveness, which improved lung cancer cell inhibition induced by the miRNA intracellularly. In addition, RPRIN exhibits several advantages, such as prolonged circulation duration, reduced toxicity, and immune escape. Experiments conducted both in vitro and in vivo revealed that RPRIN effectively suppressed the growth and progression of lung cancer. Thus, the mirrored RGD-modified cationic peptide showed great potential in transducing miRNA for lung cancer therapy.

8.
MedComm (2020) ; 4(3): e293, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37287755

RESUMEN

The balance of M1/M2 macrophage polarization plays an important role in regulating inflammation during acute lung injury (ALI). Yes-associated protein (YAP1) is a key protein in the Hippo-YAP1 signaling pathway and is involved in macrophage polarization. We aimed to determine the role of YAP1 in pulmonary inflammation following ALI and regulation of M1/M2 polarization. Pulmonary inflammation and injury with upregulation of YAP1 were observed in lipopolysaccharide (LPS)-induced ALI. The YAP1 inhibitor, verteporfin, attenuated pulmonary inflammation and improved lung function in ALI mice. Moreover, verteporfin promoted M2 polarization and inhibited M1 polarization in the lung tissues of ALI mice and LPS-treated bone marrow-derived macrophages (BMMs). Additionally, siRNA knockdown confirmed that silencing Yap1 decreased chemokine ligand 2 (CCL2) expression and promoted M2 polarization, whereas silencing large tumor suppressor 1 (Lats1) increased CCL2 expression and induced M1 polarization in LPS-treated BMMs. To investigate the role of inflammatory macrophages in ALI mice, we performed single-cell RNA sequencing of macrophages isolated from the lungs. Thus, verteporfin could activate the immune-inflammatory response, promote the potential of M2 macrophages, and alleviate LPS-induced ALI. Our results reveal a novel mechanism where YAP1-mediated M2 polarization alleviates ALI. Therefore, inhibition of YAP1 may be a target for the treatment of ALI.

9.
Biomolecules ; 13(5)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37238636

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to joint damage and even permanent disability, seriously affecting patients' quality of life. At present, the complete cure for RA is not achievable, only to relieve the symptoms to reduce the pain of patients. Factors such as environment, genes, and sex can induce RA. Presently, non-steroidal anti-inflammatory drugs, DRMADs, and glucocorticoids are commonly used in treating RA. In recent years, some biological agents have also been applied in clinical practice, but most have side effects. Therefore, finding new mechanisms and targets for treating RA is necessary. This review summarizes some potential targets discovered from the perspective of epigenetics and RA mechanisms.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Humanos , Calidad de Vida , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Enfermedades Autoinmunes/genética , Epigénesis Genética , Transducción de Señal
10.
Aging Dis ; 14(1): 245-255, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36818571

RESUMEN

A nonhuman primate model of ischemic stroke is considered as an ideal preclinical model to replicate various aspects of human stroke because of their similarity to humans in genetics, neuroanatomy, physiology, and immunology. However, it remains challenging to produce a reliable and reproducible stroke model in nonhuman primates due to high mortality and variable outcomes. Here, we developed a focal cerebral ischemic model induced by topical application of 50% ferric chloride (FeCl3) onto the MCA-M1 segment through a cranial window in the cynomolgus monkeys. We found that FeCl3 rapidly produced a stable intraarterial thrombus that caused complete occlusion of the MCA, leading to the quick decrease of the regional cerebral blood flow in 10 min. A typical cortical infarct was detected 24 hours by magnetic resonance imaging (MRI) and was stable at least for 1 month after surgery. The sensorimotor deficit assessed by nonhuman primate stroke scale was observed at 1 day and up to 3 months after ischemic stroke. No spontaneous revascularization or autolysis of thrombus was observed, and vital signs were not affected. All operated cynomolgus monkeys survived. Our data suggested that FeCl3-induced stroke in nonhuman primates was a replicable and reliable model that is necessary for the correct prediction of the relevance of experimental therapeutic approaches in human beings.

11.
J Neurotrauma ; 40(7-8): 742-757, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35920115

RESUMEN

Abstract Pyroptosis is considered one of a critical factor in the recovery of neurological function following traumatic brain injury. Brain injury activates a molecular signaling cascade associated with pyroptosis and inflammation, including NLRP3, inflammatory cytokines, caspase-1, gasdermin D (GSDMD), and other pyroptosis-related proteins. In this study, we explored the neuroprotective effects of LDC7559, a GSDMD inhibitor. Briefly, LDC7559, siRNA-GSDMD (si-GSDMD), or equal solvent was administrated to mice with a lipopolysaccharide + nigericin (LPS + Nig) model in vitro or with controlled cortical impact brain injury. The findings revealed that inflammation and pyroptosis levels were decreased by LDC7559 or si-GSDMD treatment both in vitro and in vivo. Immunofluorescence staining, brain water content, hematoxylin and eosin staining, and behavioral investigations suggested that LDC7559 or si-GSDMD inhibited microglial proliferation, ameliorated cerebral edema, reduced brain tissue loss, and promoted brain function recovery. Taken together, LDC7559 may inhibit pyroptosis and reduce inflammation by inhibiting GSDMD, thereby promoting the recovery of neurological function.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Fármacos Neuroprotectores , Ratones , Animales , Microglía/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Fármacos Neuroprotectores/farmacología , Piroptosis , Inflamación/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Encefálicas/metabolismo
12.
Oxid Med Cell Longev ; 2022: 3087916, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814270

RESUMEN

Aging is an inevitable consequence of life, and during this process, the epigenetic landscape changes and reactive oxygen species (ROS) accumulation increases. Inevitably, these changes are common in many age-related diseases, including neurodegeneration, hypertension, and cardiovascular diseases. In the current research, histone deacetylation 4 (HDAC4) was studied as a potential therapeutic target in vascular senescence. HDAC4 is a specific class II histone deacetylation protein that participates in epigenetic modifications and deacetylation of heat shock proteins and various transcription factors. There is increasing evidence to support that HDAC4 is a potential therapeutic target, and developments in the synthesis and testing of HDAC4 inhibitors are now gaining interest from academia and the pharmaceutical industry.


Asunto(s)
Histona Desacetilasas , Hipertensión , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Proteínas Represoras/metabolismo
13.
CNS Neurosci Ther ; 28(10): 1519-1531, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35695696

RESUMEN

AIMS: The therapeutic effect of bone marrow stromal cell (BMSC) transplantation for ischemic stroke is limited by its low survival rate. The purpose of this study was to evaluate whether Roxadustat (FG-4592) pretreatment could promote the survival rate of grafted BMSCs and improve neurological function deficits in ischemia rats. METHODS: Oxygen-glucose deprivation (OGD) and permanent middle cerebral artery occlusion (pMCAO) were constructed as stroke models in vitro and in vivo. Flow cytometry analysis and expression of Bax and Bcl-2 were detected to evaluate BMSCs apoptosis. Infarct volume and neurobehavioral score were applied to evaluate functional recovery. Inflammatory cytokine expression, neuronal apoptosis, and microglial M1 polarization were assessed to confirm the enhanced neurological recovery after FG-4592 pretreatment. RESULTS: FG-4592 promoted autophagy level to inhibit OGD-induced apoptosis through HIF-1α/BNIP3 pathway. GFP and Ki67 double staining showed an improved survival rate of BMSCs in the FG-4592 group, whereas infarct volume and neurobehavioral score verified its enhanced neurological recovery activity simultaneously. NeuN and Iba-1 fluorescence staining showed improved neural survival and decreased microglial activation, along with decreased IL-1ß, IL-6, and TNF-α levels through the TLR-4/NF-kB pathway. CONCLUSIONS: FG-4592 pretreated BMSCs improve neurological function recovery after stroke and are likely to be a promising strategy for stroke management.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Accidente Cerebrovascular , Animales , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Supervivencia Celular , Glicina/análogos & derivados , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/terapia , Isoquinolinas , Células Madre Mesenquimatosas/metabolismo , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo
14.
ACS Omega ; 7(10): 8919-8927, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35309441

RESUMEN

BACKGROUND: Ferric chloride is widely utilized in inducing thrombosis in small vessels of experimental animals. However, the lack of its application in large blood vessels of experimental animals and inconsistent concentration has limited its application. Therefore, we systematically tested the most suitable concentration and reliable induction time in the experiment of using ferric chloride to induce rat carotid artery thrombosis. METHODS: In this study, we selected the common carotid artery of 59 Sprague-Dawley rats as the target vessel. The exploration process was divided into three stages. First, to determine the optimum induction concentration, we compared the effects of 30-60% ferric chloride on thrombus formation within 24 h. Second, to confirm the handling time, we tested different induction times from 3 min to 10 min. Lastly, we used the thrombolytic drug rt-PA to detect whether the formed thrombus can be lysed. Doppler blood flow imaging and H-E staining were employed to estimate the blood flow and thrombus. The ATP levels in the brain were measured using a bioluminescence ATP assay kit. RESULTS: We found that the application of 50% ferric chloride for 10 min was enough to successfully induce thrombosis in the rat carotid artery and without spontaneous thrombolysis after 24 h. It is better than other concentrations and will lead to the decline of the ATP content in the ischemic hemisphere. CONCLUSIONS: Our results indicate that the rat carotid artery thrombosis model induced by 50% ferric chloride for 10 min is stable and reliable.

15.
J Drug Target ; 30(6): 614-622, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35078385

RESUMEN

Lung cancer remains one of the leading causes of death in humans. Gefitinib is an inhibitor of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) commonly used to suppress tumour growth. However, constantly use of gefitinib results in drug-resistance, reduced efficacy and undesired side effects. To circumvent these drawbacks, targeted and photothermal therapies have emerged as effective strategies. Herein, we are first to adopt a black phosphorus (BP) nanoparticle-based novel delivering strategy by combining gefitinib and cancer cytomembrane to treat non-small cell lung cancer (NSCLC). In these gefitinib-containing nano-carriers, cyanine 5 (Cy5) biotin-labelled BP was incorporated with cancer membrane and then consists of a nanomaterial (BPGM), which enabled to deliver gefitinib to the tumours effectively. The combination of BPGM showed reinforcing effects to suppress NSCLC cells and xenograft tumours without apparent adverse effects both in vitro and in vivo. BPGM facilitated the delivery of gefitinib to tumour tissue and extended its retention time within tumours. These studies thus suggest that BP may serve as novel delivery strategy for lung cancer.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas , Antineoplásicos/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/genética , Gefitinib/farmacología , Gefitinib/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Mutación , Fósforo/farmacología , Fósforo/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/uso terapéutico
16.
Funct Integr Genomics ; 22(1): 89-112, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34870779

RESUMEN

Epigenetic modifications viz. DNA methylation, histone modifications, and RNA-based alterations play a crucial role in the development of cardiovascular diseases. In this study, we investigated DNA methylation with an aim to reveal the epigenetic etiology of heart failure. Sprague-Dawley rats surviving myocardial infarction developed acute heart failure in 1 week. Genomic DNA methylation changes were profiled by bisulfite sequencing, and gene expression levels were analyzed by RNA-seq in failing and sham-operation hearts. A total of 3480 differentially methylated genes in the promoter regions including transcriptional start site and 1934 transcriptome-altered genes were identified in the defected hearts. Common differential genes were enriched by the gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and protein-protein interaction for HF phenotypes. Among these, Mettl11b, HDAC3, HDAC11, ubiquitination-related genes, and snoRNAs are new epigenetic classifiers that had not been reported yet, which may be important regulators in HF.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Insuficiencia Cardíaca , Transcriptoma , Animales , Insuficiencia Cardíaca/genética , Ratas , Ratas Sprague-Dawley
17.
Biomed Res Int ; 2021: 9916328, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34541001

RESUMEN

Ferroptosis and inflammation induced by cerebral hemorrhage result in an excessive inflammatory response and irreversible neuronal injury. Alleviating ferroptosis might be an effective way to prevent neuroinflammatory injury and promote neural functional recovery. Pyridoxal isonicotinoyl hydrazine (PIH), a lipophilic iron-chelating agent, has been reported to reduce excess iron-induced cytotoxicity. However, whether PIH could ameliorate the effects of hemorrhagic stroke is not completely understood. In the present study, the preventive effects of PIH in an intracerebral hemorrhage (ICH) mouse model were investigated. Neurological score, rotarod test, and immunofluorescence around the hematoma were assessed to evaluate the effects of PIH on hemorrhagic injury. The involvement of ferroptosis and inflammation was also examined in vitro to explore the underlying mechanism. Results showed that administration of PIH prevented neuronal cell death and reduced lipid peroxidation in Erastin-treated PC-12 cells. In vivo, mice treated with PIH after ICH attenuated neurological deficit scores. Additionally, we found PIH reduced ROS production, iron accumulation, and lipid peroxidation around the hematoma peripheral tissue. Meanwhile, ICH mice treated with PIH showed an upregulation of the key ferroptosis enzyme, glutathione peroxidase 4, and downregulation of cyclooxygenase-2. Moreover, PIH administration inhibited proinflammatory polarization and reduced interleukin-1 beta and tumor necrosis factor alpha in ICH mice. Collectively, these results demonstrated that PIH protects mice against hemorrhage stroke, which was associated with mitigation of inflammation and ferroptosis.


Asunto(s)
Hemorragia Cerebral/tratamiento farmacológico , Ferroptosis/efectos de los fármacos , Isoniazida/análogos & derivados , Piridoxal/análogos & derivados , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Hemorragia Cerebral/metabolismo , Compuestos Férricos/farmacología , Ferroptosis/fisiología , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Hierro/metabolismo , Quelantes del Hierro/farmacología , Isoniazida/metabolismo , Isoniazida/farmacología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Piridoxal/metabolismo , Piridoxal/farmacología
18.
Front Cell Dev Biol ; 9: 659080, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422796

RESUMEN

The tumor microenvironment (TME) plays an important role in the growth and invasion of glioma. This study aimed to analyze the composition of the immune microenvironment in glioma samples and analyze the important differentially expressed genes to identify novel immune-targeted therapy for glioma. We downloaded transcriptomic data of 669 glioma samples from The Cancer Genome Atlas database. CIBERSORT and ESTIMATE methods were used to calculate the proportion of tumor-infiltrating immune cells and ratio of immune and stromal components in the TME. The differentially expressed genes (DEGs) were screened by comparing the genes expressed by both stromal and immune cells. Annexin A1 (ANXA1) was determined to be an important prognostic indicator through the common overlap of univariate Cox regression analysis and protein-protein interaction network analysis. The proportion of tumor-infiltrating immune cells, calculated by CIBERSORT algorithm, had a significant difference in distribution among the high and low ANXA1 expression groups, indicating that ANXA1 could be an important immune marker of TME. Furthermore, ANXA1 level was positively correlated with the histopathological factors and negatively related to the survival of glioma patients based on the analysis of multiple databases. Finally, in vitro experiments verified that antagonizing ANXA1 expression promoted cell apoptosis and inhibited the invasion and migration capacities of glioma cells. Therefore, ANXA1 due to its immune-related functions, can be an important prognostic indicator and immune microenvironmental marker for gliomas. Further studies are warranted to confirm ANXA1 as a potential immunotherapeutic target for gliomas.

19.
Acta Pharmacol Sin ; 42(9): 1486-1497, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33893396

RESUMEN

Non-small cell lung cancer (NSCLC) is characterized by a high incidence of metastasis and poor survival. As epithelial-mesenchymal transition (EMT) is well recognized as a major factor initiating tumor metastasis, developing EMT inhibitor could be a feasible treatment for metastatic NSCLC. Recent studies show that triptolide isolated from Tripterygium wilfordii Hook F attenuated the migration and invasion of breast cancer, colon carcinoma, and ovarian cancer cells, and EMT played important roles in this process. In the present study we investigated the effect of triptolide on the migration and invasion of NSCLC cell lines. We showed that triptolide (0.5, 1.0, 2.0 nM) concentration-dependently inhibited the migration and invasion of NCI-H1299 cells. Triptolide treatment concentration-dependently suppressed EMT in NCI-H1299 cells, evidenced by significantly elevated E-cadherin expression and reduced expression of ZEB1, vimentin, and slug. Furthermore, triptolide treatment suppressed ß-catenin expression in NCI-H1299 and NCI-H460 cells, overexpression of ß-catenin antagonized triptolide-caused inhibition on EMT, whereas knockout of ß-catenin enhanced the inhibitory effect of triptolide on EMT. Administration of triptolide (0.75, 1.5 mg/kg per day, ip, every 2 days) for 18 days in NCI-H1299 xenograft mice dose-dependently suppressed the tumor growth, restrained EMT, and decreased lung metastasis, as evidence by significantly decreased expression of mesenchymal markers, increased expression of epithelial markers as well as reduced number of pulmonary lung metastatic foci. These results demonstrate that triptolide suppresses NSCLC metastasis by targeting EMT via reducing ß-catenin expression. Our study implies that triptolide may be developed as a potential agent for the therapy of NSCLC metastasis.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Diterpenos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fenantrenos/farmacología , beta Catenina/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Compuestos Epoxi/farmacología , Xenoinjertos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones Endogámicos BALB C , Ratones Desnudos , beta Catenina/genética
20.
J Pharm Biomed Anal ; 197: 113969, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33636646

RESUMEN

Previous studies have reported that nucleic acid methylation is a critical element in cardiovascular disease, and most studies mainly focused on sequencing and biochemical research. Here we developed an Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/ MS) method for the quantification analysis of the dissociative epigenetic modified nucleosides (5mdC, 5mrC, m6A) in Myocardial Infarction (MI) SD rats from different periods (1 week, 4 weeks, 8 weeks) after the surgery. The samples for analysis were obtained from heart tissue and blood of the rats. All the quantification results are compared with the sham-operated group. Total RNA and DNA were isolated by enzymatic hydrolytic methods before the UPLC-MS/MS analysis. The statistical analysis demonstrates the dynamic changes of modified nucleosides in MI rats, and it showed good specificity, accuracy, stability and less samples were needed in the method. In this paper, we discovered that the concentration of 5mdC, 5mrC, m6A from heart tissue significantly increased at 8 weeks after the surgery. Furthermore, UPLC-MS/MS helps us observe the similar change of the concentration of those 3 methylated biomarkers in peripheral blood after 8 weeks. The result shows that the dynamic process of those 3 methylated biomarkers in peripheral blood is related to the content of methylated biomarkers from the heart tissue. Based on the scientific evidence available, we proved that the methylation of genetic materials in peripheral blood is similar to myocardial infarction tissue. The relation between them indicates that peripheral blood could be a promising alternative to the heart tissue which monitor the level of methylation and MI diagnosis-aided.


Asunto(s)
ARN , Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Metilación de ADN , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...